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Abstract
We present an operator approach to deriving Mehler’s formula and the Rogers
formula for the bivariate Rogers–Szegö polynomials hn(x, y|q). The proof
of Mehler’s formula can be considered as a new approach to the nonsymmetric
Poisson kernel formula for the continuous big q-Hermite polynomials
Hn(x; a|q) due to Askey, Rahman and Suslov. Mehler’s formula for hn(x, y|q)

involves a 3φ2 sum and the Rogers formula involves a 2φ1 sum. The proofs
of these results are based on parameter augmentation with respect to the q-
exponential operator and the homogeneous q-shift operator in two variables.
By extending recent results on the Rogers–Szegö polynomials hn(x|q) due to
Hou, Lascoux and Mu, we obtain another Rogers-type formula for hn(x, y|q).
Finally, we give a change of base formula for Hn(x; a|q) which can be used to
evaluate some integrals by using the Askey–Wilson integral.

PACS number: 02.30.Gp
Mathematics Subject Classification: 05A30, 33D45

1. Introduction

The Rogers–Szegö polynomials hn(x|q) have been extensively studied since the end of the
19th century. Two classical results for the Rogers–Szegö polynomials are Mehler’s formula
and the Rogers formula which respectively correspond to the Poisson kernel formula and the
linearization formula. In this paper, we extend Mehler’s formula and the Rogers formula
to the bivariate Rogers–Szegö polynomials hn(x, y|q) by using the q-exponential operator
as studied in [11] and the homogeneous q-shift operator recently introduced by Chen, Fu
and Zhang [10]. It should be noted that Mehler’s formula for hn(x, y|q) is equivalent to
the nonsymmetric Poisson kernel formula for the continuous big q-Hermite polynomials due
to Askey, Rahman and Suslov [5]. So, our proof of Mehler’s formula for hn(x, y|q) may
be considered as a new approach to the nonsymmetric Poisson kernel for the continuous big

1751-8113/07/236071+14$30.00 © 2007 IOP Publishing Ltd Printed in the UK 6071

http://dx.doi.org/10.1088/1751-8113/40/23/005
mailto:chen@nankai.edu.cn
mailto:hus6274@hotmail.com
mailto:sun@cfc.nankai.edu.cn
http://stacks.iop.org/JPhysA/40/6071


6072 W Y C Chen et al

q-Hermite polynomials. As can be seen, the bivariate version of the Rogers–Szegö polynomials
is easier to deal with from the operator point of view.

Let us review some common notation and terminology for the basic hypergeometric series
in [13]. Throughout this paper, we assume that |q| < 1. The q-shifted factorial is defined by

(a; q)0 = 1, (a; q)∞ =
∞∏

k=0

(1 − aqk), (a; q)n =
n−1∏
k=0

(1 − aqk), n ∈ Z.

The following notation stands for the multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

The q-binomial coefficients, or the Gaussian coefficients, are given by[
n

k

]
= (q; q)n

(q; q)k(q; q)n−k

.

The basic hypergeometric series r+1φr are defined by

r+1φr

(
a1, . . . , ar+1

b1, . . . , br

; q, x

)
=

∞∑
n=0

(a1, . . . , ar+1; q)n

(q, b1, . . . , br ; q)n
xn.

We will be mainly concerned with the bivariate Rogers–Szegö polynomials as given
below:

hn(x, y|q) =
n∑

k=0

[
n

k

]
Pk(x, y),

where Pn(x, y) = (x − y)(x − qy) · · · (x − qn−1y) are the Cauchy polynomials with the
generating function

∞∑
n=0

Pn(x, y)
tn

(q; q)n
= (yt; q)∞

(xt; q)∞
, |xt | < 1. (1.1)

Note that the Cauchy polynomials Pn(x, y) naturally arise in the q-umbral calculus as studied
by Andrews [2, 3], Goldman and Rota [14], Goulden and Jackson [15], Ihrig and Ismail [17],
Johnson [21] and Roman [27]. The generating function (1.1) is also the homogeneous version
of the Cauchy identity or the q-binomial theorem [13]:

∞∑
k=0

(a; q)k

(q; q)k
zk = (az; q)∞

(z; q)∞
, |z| < 1. (1.2)

Putting a = 0, (1.2) becomes Euler’s identity [13]
∞∑

n=0

zk

(q; q)k
= 1

(z; q)∞
, |z| < 1 (1.3)

and its inverse relation takes the form
∞∑

k=0

(−1)kq(k

2)zk

(q; q)k
= (z; q)∞. (1.4)

The continuous big q-Hermite polynomials [23] are defined by

Hn(x; a|q) =
n∑

k=0

[
n

k

]
(a eiθ ; q)k ei(n−2k)θ , x = cos θ.



The bivariate Rogers–Szegö polynomials 6073

We first observe that the bivariate Rogers–Szegö polynomials hn(x, y|q) introduced by
Chen, Fu and Zhang [10] are equivalent to the continuous big q-Hermite polynomials owing
to the following relation:

Hn(x; a|q) = einθhn(e
−2iθ , a e−iθ |q), x = cos θ. (1.5)

The polynomials hn(x, y|q) have the generating function [10]:
∞∑

n=0

hn(x, y|q)
tn

(q; q)n
= (yt; q)∞

(t, xt; q)∞
, |t | < 1, |xt | < 1, (1.6)

which is equivalent to the generating function for the big continuous q-Hermite polynomials,
see, for example, Koekoek–Swarttouw [23]. Note that the classical Rogers–Szegö polynomials,

hn(x|q) =
n∑

k=0

[
n

k

]
xk,

are a special case of hn(x, y|q) when y is set to zero, and in this case (1.6) reduces to
∞∑

n=0

hn(x|q)
tn

(q; q)n
= 1

(t, xt; q)∞
, |t | < 1. (1.7)

The Rogers–Szegö polynomials play an important role in the theory of orthogonal polynomials,
particularly in the study of the Askey–Wilson polynomials, see [1, 4, 8, 9, 18, 20, 24, 29].
They are closely related to the q-Hermite polynomials

Hn(x|q) =
n∑

k=0

[
n

k

]
ei(n−2k)θ , x = cos θ.

In fact, the following relations hold:

Hn(x|q) = Hn(x; 0|q) = einθhn(e
−2iθ |q), x = cos θ. (1.8)

The continuous big q-Hermite polynomials Hn(x; a|q) are connected with the q-Hermite
polynomials Hn(x|q) via the following relation [7, 12]:

Hn(x; a|q) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)akHn−k(x|q), (1.9)

and the inverse expansion of (1.9) becomes

Hn(x|q) =
n∑

k=0

[
n

k

]
akHn−k(x; a|q). (1.10)

This paper is motivated by the natural question of extending Mehler’s formula to
hn(x, y|q), where Mehler’s formula for the Rogers–Szegö polynomials reads

∞∑
n=0

hn(x|q)hn(y|q)
tn

(q; q)n
= (xyt2; q)∞

(t, xt, yt, xyt; q)∞
. (1.11)

Formula (1.11) has been extensively studied, see [11, 18, 22, 24, 29, 30]. Based on the
recurrence relation for Hn(x|q), Bressoud [9] gave a proof of the equivalent formula, or the
Poisson kernel formula, for the q-Hermite polynomials Hn(x|q). Ismail, Stanton and Viennot
[20] found a combinatorial proof of the Poisson kernel formula for Hn(x|q) by using the vector
space interpretation of the q-binomial coefficients. Askey, Rahman and Suslov [5] derived
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the nonsymmetric Poisson kernel formula for the continuous big q-Hermite polynomials
Hn(x; a|q):

∞∑
n=0

Hn(x; a|q)Hn(y; b|q)
tn

(q; q)n
= (at eiβ, b e−iβ, t2; q)∞

(t ei(θ+β), t ei(θ−β), t e−i(θ+β), t e−i(θ−β); q)∞

× 3φ2

(
t ei(θ+β), t e−i(θ−β), at/b

at eiβ, t2 ; q, b e−iβ

)
, (1.12)

where x = cos θ, y = cos β. The above formula can be viewed as Mehler’s formula for
Hn(x; a|q). Moreover, it can be restated in terms of hn(x, y|q) (theorem 2.1). The first result
of this paper is an operator approach to Mehler’s formula for hn(x, y|q). We will present a
simple proof by using the exponential operators involving the classical q-differential operator
and a bivariate q-differential operator introduced by Chen, Fu and Zhang [10].

The second result of this paper is the Rogers formula for hn(x, y|q). The Rogers formula
[11, 24, 25] for the classical Rogers–Szegö polynomials hn(x|q) reads:

∞∑
n=0

∞∑
m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m
= (xst; q)∞

∞∑
n=0

∞∑
m=0

hn(x|q)hm(x|q)
tn

(q; q)n

sm

(q; q)m
.

(1.13)

One of the most important applications of the Rogers formula is to deduce the following
linearization formula for hn(x|q) (cf [9, 18, 26]):

hn(x|q)hm(x|q) =
min{n,m}∑

k=0

[
n

k

][
m

k

]
(q; q)kx

khn+m−2k(x|q). (1.14)

Based on a recent approach of Hou, Lascoux and Mu to the Rogers–Szegö polynomials,
we derive a second Rogers-type formula for hn(x, y|q) which leads to a simpler linearization
formula compared with the first one we have obtained.

We conclude this paper with a change of base formula for Hn(x; a|q). This formula along
with other identities can be used to compute some integrals with the aid of the Askey–Wilson
integral.

2. Mehler’s formula for hn(x, y|q)

In this section, we aim to present an operator approach to Mehler’s formula for the bivariate
Rogers–Szegö polynomials hn(x, y|q).

Theorem 2.1 (Mehler’s formula for hn(x, y|q)). We have
∞∑

n=0

hn(x, y|q)hn(u, v|q)
tn

(q; q)n
= (yt, vxt; q)∞

(t, xt, uxt; q)∞
3φ2

(
y, xt, v/u

yt, vxt
; q, ut

)
, (2.1)

provided that |t |, |xt |, |ut |, |uxt | < 1.

Obviously, Mehler’s formula (1.11) for hn(x|q) can be deduced from the above theorem
by setting y = 0, v = 0 and u = y. We note that it is not difficult to reformulate (2.1) as the
nonsymmetric Poisson kernel formula (1.12) for Hn(x; a|q). To this end, we first make the
variable substitutions x → e−2iθ , y → a e−iθ , u → e−2iβ , v → be−iβ , so that we may use
relation (1.5) to transform hn(x, y|q) and hn(u, v|q) into Hn(x; a|q) and Hn(y; b|q). Then
the formula (1.12) follows from the 3φ2 transformation [13, appendix III, equation (III.9)]:

3φ2

(
a, b, c

d, e
; q,

de

abc

)
= (e/a, de/bc; q)∞

(e, de/abc; q)∞
3φ2

(
a, d/b, d/c

d, de/bc
; q,

e

a

)
. (2.2)
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Our operator approach to theorem 2.1 involves two identities (lemmas 2.2 and 2.3) in
connection with the q-exponential operator and the homogeneous q-shift operator. The q-
differential operator, or the q-derivative, acting on the variable a, is defined by

Dqf (a) = f (a) − f (aq)

a
,

and the q-exponential operator is given by

T (bDq) =
∞∑

n=0

(bDq)
n

(q; q)n
.

Evidently,

T (Dq){xn} = hn(x|q). (2.3)

Lemma 2.2. We have

T (bDq)

{
(av; q)∞

(as, at; q)∞

}
= (bv; q)∞

(as, bs, bt; q)∞
2φ1

(
v/t, bs

bv
; q, at

)
, (2.4)

provided that |bs|, |bt | < 1.

From the Leibniz rule for Dq (see [28])

Dn
q {f (a)g(a)} =

n∑
k=0

qk(k−n)

[
n

k

]
Dk

q{f (a)}Dn−k
q {g(qka)},

(2.4) can be verified by straightforward computation. Here, we also note that a more general
relation has been established by Zhang and Wang [31]:

T (bDq)

{
(av; q)∞

(as, at, aw; q)∞

}
= (av, bv; q)∞

(abstw/v; q)∞
(as, at, aw, bs, bt, bw; q)∞

× 3φ2

(
v/s, v/t, v/w

av, bv
; q, abstw/v

)
, (2.5)

where |bs|, |bt |, |bw|, |abstw/v| < 1. Setting w = 0 in (2.5), by virtue of Jackson’s
transformation [13, appendix III, equation (III.4)] and Heine’s transformation [13, appendix III,
equation (III.1)], (2.4) becomes a consequence of (2.5).

In [10], Chen, Fu and Zhang introduced the homogeneous q-difference operator

Dxyf (x, y) = f (x, q−1y) − f (qx, y)

x − q−1y

and the homogeneous q-shift operator

E(Dxy) =
∞∑

k=0

Dk
xy

(q; q)k
.

The following basic facts have been observed in [10]:

Dxy{Pn(x, y)} = (1 − qn)Pn−1(x, y),
(2.6)

E(Dxy){Pn(x, y)} = hn(x, y|q).

Lemma 2.3. We have

E(Dxy)

{
(yt; q)∞
(xt; q)∞

Pn(x, y)

(yt; q)n

}
= (yt; q)∞

(t, xt; q)∞

n∑
k=0

[
n

k

]
(y, xt; q)k

(yt; q)k
xn−k,

provided that |t |, |xt | < 1.
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Proof. Let us compute the following sum in two ways:

∞∑
n=0

hn(x, y|q)hn(z|q)
tn

(q; q)n
. (2.7)

We may either express hn(z|q) as T (Dq){zn} by (2.3) or express hn(x, y|q) as
E(Dxy){Pn(x, y)} by (2.6). Invoking hn(z|q) = T (Dq){zn}, the sum (2.7) equals

∞∑
n=0

hn(x, y|q)T (Dq){zn} tn

(q; q)n

= T (Dq)

{ ∞∑
n=0

hn(x, y|q)
(zt)n

(q; q)n

}
(|zt | < 1, |xzt | < 1)

= T (Dq)

{
(yzt; q)∞

(xzt, zt; q)∞

}
(|t | < 1, |xt | < 1).

According to lemma 2.2, (2.7) can be expressed in the following form

(yt; q)∞
(xzt, xt, t; q)∞

2φ1

(
y, xt

yt
; q, zt

)
. (2.8)

On the other hand, (2.7) also equals

∞∑
n=0

E(Dxy) {Pn(x, y)} hn(z|q)
tn

(q; q)n

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)hn(z|q)
tn

(q; q)n

}

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)

n∑
k=0

[
n

k

]
zk tn

(q; q)n

}

= E(Dxy)

{ ∞∑
k=0

( ∞∑
n=0

Pn(x, qky)
tn

(q; q)n

)
Pk(x, y)

(zt)k

(q; q)k

}

=
∞∑

k=0

(zt)k

(q; q)k
E(Dxy)

{
(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}
,

where |xt | < 1. Now, we see that

∞∑
k=0

(zt)k

(q; q)k
E(Dxy)

{
(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}
= (yt; q)∞

(xzt, xt, t; q)∞
2φ1

(
y, xt

yt
; q, zt

)
.

Employing Euler’s identity (1.3) for 1/(xzt; q)∞ and expanding the 2φ1 summation on the
right-hand side of the above identity, we obtain

∞∑
k=0

(zt)k

(q; q)k
E(Dxy)

{
(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}
= (yt; q)∞

(t, xt; q)∞

∞∑
n=0

∞∑
k=0

(y, xt; q)n

(q, yt; q)n

zn+ktn+kxk

(q; q)k
.

Equating the coefficients of zn, the desired identity follows. �

We are now ready to present the proof of theorem 2.1.
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Proof. From (2.6) it follows that
∞∑

n=0

hn(x, y|q)hn(u, v|q)
tn

(q; q)n

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)hn(u, v|q)
tn

(q; q)n

}

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)
tn

(q; q)n

n∑
k=0

[
n

k

]
Pk(u, v)

}

= E(Dxy)

{ ∞∑
k=0

Pk(u, v)Pk(x, y)
tk

(q; q)k

( ∞∑
n=0

Pn(x, qky)
tn

(q; q)n

)}
(|xt | < 1)

= E(Dxy)

{ ∞∑
k=0

Pk(u, v)Pk(x, y)
tk

(q; q)k

(qkyt; q)∞
(xt; q)∞

}

=
∞∑

k=0

Pk(u, v)
tk

(q; q)k
E(Dxy)

{
(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}
(|t |, |xt | < 1).

In view of lemma 2.3, the above summation equals

(yt; q)∞
(t, xt; q)∞

∞∑
k=0

Pk(u, v)
tk

(q; q)k

k∑
j=0

[
k

j

]
(y, xt; q)j

(yt; q)j
xk−j .

Exchanging the order of summations, we get

(yt; q)∞
(t, xt; q)∞

∞∑
j=0

Pj (u, v)
(y, xt; q)j

(q, yt; q)j
tj

∞∑
k=0

(xt)kPk(u, qjv)

(q; q)k
(|uxt | < 1)

= (yt, vxt; q)∞
(t, xt, uxt; q)∞

∞∑
j=0

Pj (u, v)
(y, xt; q)j

(q, yt, vxt; q)j
tj

= (yt, vxt; q)∞
(t, xt, uxt; q)∞

3φ2

(
y, xt, v/u

yt, vxt
; q, ut

)
(|ut | < 1).

This completes the proof. �

3. The Rogers formula for hn(x, y|q)

In this section, we obtain the Rogers formula for the bivariate Rogers–Szegö polynomials
hn(x, y|q) using the operator E(Dxy) and the technique of parameter augmentation [10, 11].
This Rogers formula implies a linearization formula for hn(x, y|q). We also get another
Rogers-type formula for hn(x, y|q) which leads to a simpler linearization formula.

Theorem 3.1 (the Rogers formula for hn(x,y|q)). We have

∞∑
n=0

∞∑
m=0

hn+m(x, y|q)
tn

(q; q)n

sm

(q; q)m
= (ys; q)∞

(s, xs, xt; q)∞
2φ1

(
y, xs

ys
; q, t

)
, (3.1)

provided that |t |, |s|, |xt |, |xs| < 1.
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Proof. By (2.6), we have
∞∑

n=0

∞∑
m=0

hn+m(x, y|q)
tn

(q; q)n

sm

(q; q)m

= E(Dxy)

{ ∞∑
n=0

∞∑
m=0

Pn+m(x, y)
tn

(q; q)n

sm

(q; q)m

}

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)
tn

(q; q)n

( ∞∑
m=0

Pm(x, qny)
sm

(q; q)m

)}
(|xs| < 1)

= E(Dxy)

{ ∞∑
n=0

Pn(x, y)
tn

(q; q)n

(qnys; q)∞
(xs; q)∞

}

=
∞∑

n=0

tn

(q; q)n
E(Dxy)

{
(ys; q)∞Pn(x, y)

(xs; q)∞(ys; q)n

}
(|s| < 1, |xs| < 1).

Employing lemma 2.3, we find

(ys; q)∞
(s, xs; q)∞

∞∑
n=0

tn

(q; q)n

n∑
k=0

[
n

k

]
(y, xs; q)k

(ys; q)k
xn−k

= (ys; q)∞
(s, xs; q)∞

∞∑
k=0

(y, xs; q)k

(q, ys; q)k
tk

∞∑
n=0

(xt)n

(q; q)n
(|xt | < 1)

= (ys; q)∞
(s, xs, xt; q)∞

∞∑
k=0

(y, xs; q)k

(q, ys; q)k
tk

= (ys; q)∞
(s, xs, xt; q)∞

2φ1

(
y, xs

ys
; q, t

)
(|t | < 1),

as desired. �

Clearly, the Rogers formula (1.13) for hn(x|q) is a special case of (3.1) when y = 0.
From the above theorem and (1.5), we get the equivalent formula for Hn(x; a|q):
∞∑

n=0

∞∑
m=0

Hn+m(x; a|q)
tn

(q; q)n

sm

(q; q)m

= (as; q)∞
(s eiθ , s e−iθ , t e−iθ ; q)∞

2φ1

(
a e−iθ , s e−iθ

as
; q, t eiθ

)
,

where x = cos θ and |t eiθ |, |s eiθ |, |t e−iθ |, |s e−iθ | < 1.
As in the classical case, the Rogers formula can be used to derive linearization formula.

For the bivariate case, we obtain the linearization formula for hn(x, y|q) as a double summation
identity.

Corollary 3.1.1. We have
n∑

k=0

m∑
l=0

[
n

k

][
m

l

]
(y; q)k(y/x; q)lx

lhn+m−k−l (x, y|q)

=
n∑

k=0

m∑
l=0

[
n

k

][
m

l

]
(y; q)k(y/x; q)l(xqk)lhn−k(x, y|q)hm−l (x, y|q).
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Proof. We rewrite theorem 3.1 in the following form:

(ys; q)∞(yt; q)∞
(xs; q)∞(t; q)∞

∞∑
n=0

∞∑
m=0

hn+m(x, y|q)
tn

(q; q)n

sm

(q; q)m

=
∞∑

k=0

(y; q)k(ysqk; q)∞
(q; q)k(xsqk; q)∞

t k
∞∑

n=0

∞∑
m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m
.

Expanding (ys; q)∞/(xs; q)∞, (yt; q)∞/(t; q)∞, (ysqk; q)∞/(xsqk; q)∞ by the Cauchy
identity (1.2), and equating the coefficients of tnsm, the required formula is justified. �

We note that Hou, Lascoux and Mu [16] represented the Rogers–Szegö polynomials
hn(x|q) as a special case of the complete symmetric functions. By computing the Hankel
forms, they obtained the Askey–Ismail formula (see [4, 11])

hm+n(x|q) =
min{m,n}∑

k=0

[
n

k

][
m

k

]
(q; q)kq

(k

2)(−x)khn−k(x|q)hm−k(x|q), (3.2)

which can be regarded as the inverse relation of the linearization formula (1.14) for the
Rogers–Szegö polynomials. Applying the technique of Hou, Lascoux and Mu to the bivariate
Rogers–Szegö polynomials hn(x, y|q), the following relation can be verified:
min{m,n}∑

k=0

[
n

k

][
m

k

]
(−1)k(q; q)kq

(k

2)(xkhn−k(x, y|q)hm−k(x, y|q) − ykhn+m−k(x, y|q)) = 0.

(3.3)

The details of the proof are omitted. Multiplying the above equation by

tn

(q; q)n

sm

(q; q)m

and summing over n and m, we get another Rogers-type formula.

Theorem 3.2. We have
∞∑

k=0

(−1)kykq(k

2)

(q; q)k

∞∑
n=k

∞∑
m=k

hn+m−k(x, y|q)
tn

(q; q)n−k

sm

(q; q)m−k

= (xst; q)∞
∞∑

n=0

∞∑
m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m
. (3.4)

Clearly, the classical Rogers formula (1.13) is a special case when y = 0. By equating
the coefficients of tnsm in the above theorem, we can derive a simpler linearization formula
for hn(x, y|q).

Corollary 3.2.2. For n,m � 0, we have

hn(x, y|q)hm(x, y|q)

=
min{m,n}∑

l=0

min{m,n}∑
k=0

[
m

l

][
n

l

][
m − l

k

][
n − l

k

]

× (q; q)k(q; q)l(−1)kxlykq(k

2)hn+m−2l−k(x, y|q). (3.5)

The following special case of theorem 3.1 for y = 0 will be useful to verify the relation
between hn(x|q) and hn(x, y|q).
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Corollary 3.2.3. For n,m � 0, we have

min{n,m}∑
k=0

[
n

k

][
m

k

]
(q; q)kx

khn+m−2k(x|q)

=
(

n∑
k=0

[
n

k

]
ykhn−k(x, y|q)

) 
 m∑

j=0

[
m

j

]
yjhm−j (x, y|q)


 . (3.6)

Proof. Setting y = 0 in theorem 3.1, from the Cauchy identity (1.2) and (1.6) it follows that

∞∑
n=0

∞∑
m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

= 1

(s, xs, xt; q)∞

∞∑
k=0

(xs; q)k

(q; q)k
tk (|t | < 1)

= (xst; q)∞
(ys, yt; q)∞

(yt; q)∞
(t, xt; q)∞

(ys; q)∞
(s, xs; q)∞

(|t |, |s|, |xt |, |xs| < 1)

= (xst; q)∞
(ys, yt; q)∞

∞∑
n=0

∞∑
m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m
, (3.7)

which can be rewritten as

1

(xst; q)∞

∞∑
n=0

∞∑
m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

= 1

(yt, ys; q)∞

∞∑
n=0

∞∑
m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m
,

where |t |, |s|, |xt |, |xs| < 1.
Assuming that |xst |, |yt |, |ys| < 1, we can expand 1/(xst; q)∞, 1/(yt; q)∞ and

1/(ys; q)∞ by Euler’s identity (1.3). Equating coefficients of tnsm gives (3.6). Since
|t |, |s|, |xt |, |xs| < 1 and |xst |, |yt |, |ys| < 1, we see that |x| and |y| must be finite. This
completes the proof. �

When y = 0, both (3.5) and (3.6) reduce to the well-known linearization formula (1.14).
Setting m = 0 in (3.6), we are led to the following relation between hn(x|q) and hn(x, y|q):

hn(x|q) =
n∑

k=0

[
n

k

]
ykhn−k(x, y|q), (3.8)

which is a special case of a relation of Askey–Wilson [6, equation (6.4)]. The inverse relation
of (3.8) is as follows:

hn(x, y|q) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)ykhn−k(x|q). (3.9)

Note that (3.8) and (3.9) are equivalent to relations (1.10) and (1.9) between Hn(x|q) and
Hn(x; a|q).

In fact, we can go one step further from (3.7). Reformulating (3.7) by multiplying
(ys, yt; q)∞ on both sides and expanding (ys; q)∞, (yt; q)∞ and (xst; q)∞ using Euler’s
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formula (1.4), we get
∞∑

n=0

∞∑
m=0

∞∑
j=0

∞∑
k=0

q(j

2)+(k

2)(−y)j+k

(q; q)j (q; q)k
hn+m(x|q)

tn+j

(q, q)n

sm+k

(q, q)m

=
∞∑

n=0

∞∑
m=0

∞∑
k=0

q(k

2)(−x)k

(q; q)k
hn(x, y|q)hm(x, y|q)

tn+k

(q, q)n

sm+k

(q, q)m
.

Comparing the coefficients of tnsm, we reach the following identity:
n∑

j=0

m∑
k=0

[
n

j

][
m

k

]
q(j

2)+(k

2)(−y)j+khn+m−(j+k)(x|q)

=
min{n,m}∑

k=0

[
n

k

][
m

k

]
(q; q)kq

(k

2)(−x)khn−k(x, y|q)hm−k(x, y|q). (3.10)

Setting y = 0 in the above identity, we are led to the Askey–Ismail formula (3.2).

4. A change of base formula for Hn(x; a|q)

In this section, we give an extension of the q-Hermite change of base formula to the continuous
big q-Hermite polynomials. The corresponding statement for hn(x, y|q) is omitted because
we find that it is more convenient to work with Hn(x; a|q) for this purpose. This formula can
be used to evaluate certain integrals.

In [19, p 7], Ismail and Stanton gave the following q-Hermite change of base formula for
Hn(x|p):

Hn(x|p) =
n/2∑
j=0

cn,n−2j (p, q)Hn−2j (x|q), (4.1)

where x = cos θ and

cn,n−2k(p, q) =
k∑

j=0

(−1)jpk−j q(j+1
2 )

[
n − 2k + j

j

]
q

([
n

k − j

]
p

− pn−2k+2j+1

[
n

k − j − 1

]
p

)
.

From (1.9), (1.10) along with the above relation, we obtain a change of base formula
forHn(x; a|q):

Hn(x; a|p) =
n∑

j=0

dn,j,l,m(p, q)Hn−j−2l−m(x; a|q), (4.2)

where x = cos θ and

dn,j,l,m(p, q) =
[
n

j

]
p

(−1)jp(j

2)aj

(n−j)/2∑
l=0

n−j−2l∑
m=0

[
n − j − 2l

m

]
q

cn−j,n−j−2l (p, q)am.

Based on the orthogonality relation of q-Hermite polynomials Hn(x|q)

(q; q)∞
2π

∫ π

0
Hm(x|q)Hn(x|q)(e2iθ , e−2iθ ; q)∞ dθ = (q; q)nδmn,

Ismail and Stanton [19] found two generating functions for the q-Hermite polynomials:

∞∑
n=0

H2n(x|q)

(q2; q2)n
tn = (−t; q)∞

(t e2iθ , t e−2iθ ; q2)∞
, (4.3)
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∞∑
n=0

Hn(x|q2)

(q; q)n
tn = (qt2; q2)∞

(t eiθ , t e−iθ ; q)∞
, (4.4)

where x = cos θ .
Similarly, from the orthogonality relation [23] of Hn(x; a|q)

(q; q)∞
2π

∫ π

0
Hn(x; a|q)Hm(x; a|q)

(e2iθ , e−2iθ ; q)∞
(a eiθ , a e−iθ ; q)∞

dθ = (q; q)nδmn, (4.5)

it follows the identities

∞∑
n=0

( n/2∑
k=0

q(n−2k

2 )an−2ktn−k

(q2; q2)k(q; q)n−2k

)
Hn(x; a|q) = (a2t; q2)∞(−t; q)∞

(t e2iθ , t e−2iθ ; q2)∞
, (4.6)

∞∑
n=0

( n∑
k=0

(−1)kqk2
aktn+k

(q2; q2)k(q; q)n−k

)
Hn(x; a|q2) = (at; q)∞(qt2; q2)∞

(t eiθ , t e−iθ ; q)∞
, (4.7)

where x = cos θ .
Clearly, (4.3) and (4.4) are the special cases when a = 0. Recall that the generating

function [23] of Hn(x; a|q) is
m∑

n=0

Hn(x; a|q)
tn

(q; q)n
= (at; q)∞

(t eiθ , t e−iθ ; q)∞
, x = cos θ. (4.8)

Setting q → p and multiplying by the weight function (e2iθ , e−2iθ ; q)∞/(a eiθ ,

a e−iθ ; q)∞, the integrals of the generating functions (4.6–4.8) on base p can be stated as
follows:

Jp,q(a, t) = (q; q)∞(a2t;p2)∞(−t;p)∞
2π

∫ π

0

(e2iθ , e−2iθ ; q)∞
(a eiθ , a e−iθ ; q)∞(t e2iθ , t e−2iθ ;p2)∞

dθ,

Hp,q(a, t) = (q2; q2)∞(at;p)∞(pt2;p2)∞
2π

∫ π

0

(e2iθ , e−2iθ ; q2)∞
(a eiθ , a e−iθ ; q2)∞(t eiθ , t e−iθ ;p)∞

dθ,

Ip,q(a, t) = (q; q)∞(at;p)∞
2π

∫ π

0

(e2iθ , e−2iθ ; q)∞
(a eiθ , a e−iθ ; q)∞(t eiθ , t e−iθ ;p)∞

dθ.

When a = 0, they reduce to the integrals Jp,q(t),Hp,q(t) and Ip,q(t) introduced by Ismail and
Stanton [19].

We conclude with the observation that for some special values of p and q the above
integrals can be computed by the Askey–Wilson integral [13, p 154]:

(q; q)∞
2π

∫ π

0

(e2iθ , e−2iθ ; q)∞
(a eiθ , a e−iθ , b eiθ , b e−iθ , c eiθ , c e−iθ , d eiθ , d e−iθ ; q)∞

dθ

(4.9)
= (abcd; q)∞

(ab, ac, ad, bc, bd, cd; q)∞
.

Because of the change of base formula (4.2) and the orthogonality relation (4.5), we may
transform the above integrals into summations:

Jp,q(a, t) =
∞∑

n=0

n/2∑
k=0

p(n−2k

2 )an−2ktn−k

(p2;p2)k(p;p)n−2k

n∑
j=0

dn,j,l,n−j−2l (p, q),
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Hp,q(a, t) =
∞∑

n=0

n∑
k=0

(−1)kpk2
aktn+k

(p2;p2)k(p;p)n−k

n∑
j=0

dn,j,l,n−j−2l (p
2, q),

Ip,q(a, t) =
∞∑

n=0

tn

(p;p)n

n∑
j=0

dn,j,l,n−j−2l (p, q).

Using special cases of the Askey–Wilson integral (4.9), we give some examples of
Hp,q(a, t) which have closed product formulae:

Hq,q(a, t) =
∞∑

n=0

n∑
k=0

(−1)kqk2
aktn+k

(q2; q2)k(q; q)n−k

n∑
j=0

dn,j,l,n−j−2l (q
2, q) = 1,

H−q,q(a, t) =
∞∑

n=0

n∑
k=0

(−1)k(−q)k
2
aktn+k

(q2; q2)k(−q;−q)n−k

n∑
j=0

dn,j,l,n−j−2l (q
2, q) = 1,

Hq2,q (a, t) =
∞∑

n=0

n∑
k=0

(−1)kq2k2
aktn+k

(q4; q4)k(q2; q2)n−k

n∑
j=0

dn,j,l,n−j−2l (q
4, q) = (q2t2; q4)∞,

Hq2,q3(a, t) =
∞∑

n=0

n∑
k=0

(−1)kq2k2
aktn+k

(q4; q4)k(q2; q2)n−k

n∑
j=0

dn,j,l,n−j−2l (q
4, q3) = (at3q6; q6)∞

(t2q4; q4)∞
.
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